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Now, more than ever, the ability to acquire mathematical skills
efficiently is critical for academic and professional success, yet little
is known about the behavioral and neural mechanisms that drive
some children to acquire these skills faster than others. Here we
investigate the behavioral and neural predictors of individual
differences in arithmetic skill acquisition in response to 8-wk of
one-to-one math tutoring. Twenty-four children in grade 3 (ages
8–9 y), a critical period for acquisition of basic mathematical skills,
underwent structural and resting-state functional MRI scans pretu-
toring. A significant shift in arithmetic problem-solving strategies
from counting to fact retrieval was observed with tutoring. Nota-
bly, the speed and accuracy of arithmetic problem solving increased
with tutoring, with some children improving significantly more
than others. Next, we examined whether pretutoring behavioral
and brain measures could predict individual differences in arithmetic
performance improvements with tutoring. No behavioral meas-
ures, including intelligence quotient, working memory, or mathe-
matical abilities, predicted performance improvements. In contrast,
pretutoring hippocampal volume predicted performance improve-
ments. Furthermore, pretutoring intrinsic functional connectivity of
the hippocampus with dorsolateral and ventrolateral prefrontal
cortices and the basal ganglia also predicted performance improve-
ments. Our findings provide evidence that individual differences in
morphometry and connectivity of brain regions associated with
learning and memory, and not regions typically involved in arith-
metic processing, are strong predictors of responsiveness to math
tutoring in children. More generally, our study suggests that quan-
titative measures of brain structure and intrinsic brain organiza-
tion can provide a more sensitive marker of skill acquisition than
behavioral measures.

math learning | intervention | prediction | multimodal neuroimaging |
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Mathematical problem solving skills are crucial for academic
and professional success (1–3). Fluency with basic arith-

metic provides a foundation upon which more complex skills are
built (4–6). In the past two decades, math-tutoring programs
designed to improve basic arithmetic fluency have been de-
veloped and tested in classroom and one-to-one tutoring settings
(7–10). Children in these programs, however, show significant
individual differences in math learning in response to tutoring
(11). Critically, very little is known about the behavior and brain
mechanisms that drive these individual differences. An under-
standing of the behavior and brain mechanisms underlying math
learning could contribute greatly to our understanding of general
cognitive development (12). It may also explain individual dif-
ferences in response to instruction, thereby increasing the chan-
ces of identifying children who require different approaches or
more intensive intervention. Here we use a validated one-to-one
math-tutoring paradigm (10, 13, 14) to investigate the behavioral
and neural predictors of individual differences in arithmetic skill
acquisition.
Our study focuses on primary-grade school children between

the ages of 8 and 9, an important period for learning and mas-
tering arithmetic skills. Behavioral studies of primary-grade school

children by Fuchs and colleagues have shown that the combination
of computer-aided intervention and one-to-one tutoring can sig-
nificantly improve mathematical abilities (6, 9). Critically, they
found that interventions emphasizing number knowledge and
speeded practice with efficient counting strategies can improve
math skills in primary-grade school children (9, 10, 13). Number
knowledge is an important foundation in the development of
arithmetic competence because it leads to efficient counting pro-
cedures and reasoning strategies for consistently pairing a problem
with its correct answer. The inclusion of speeded practice to gen-
erate many correct responses then leads to more direct retrieval of
arithmetic facts (15). For example, Fuchs and colleagues found that
one-to-one number knowledge tutoring combined with speeded
practice on counting strategies compared with number knowledge
tutoring with games was more effective at increasing automatic
retrieval and arithmetic fluency. Findings supporting the efficacy of
combining number knowledge tutoring with speeded practice have
been replicated in multiple studies (6, 16). The neural basis of in-
dividual responses to these successful math-tutoring interventions,
however, remains poorly understood. This study characterizes the
neurobiological mechanisms predicting improvements in perfor-
mance resulting from one-to-one math tutoring and to compare
neural and cognitive predictors of responsiveness with academi-
cally relevant tutoring.
Functional neuroimaging studies in adults have consistently

implicated a number of parietal and temporal brain regions in
mathematical problem-solving tasks, including the intraparietal
sulcus (IPS), the superior parietal lobule, the angular gyrus, the
supramarginal gyrus, and the lingual and fusiform gyri in the
inferior temporal cortex (17–20). In contrast, children, compared
with adults, rely less on these posterior parietal and temporal
cortical areas for solving arithmetic problems and more on the
medial temporal lobe (MTL) memory systems critical for
learning and memory as well as prefrontal cortex (PFC) regions
important for working memory and cognitive control mecha-
nisms that are necessary for accurate problem solving (21). No-
tably, recent work on the development of fact retrieval in
children has highlighted the role of a distributed network of
interconnected prefrontal and MTL areas including the right
hippocampus, left ventrolateral prefrontal cortex (VLPFC), and
bilateral dorsolateral prefrontal cortex (DLPFC) (22, 23), a sys-
tem overlooked in most previous studies in adults. In parallel,
studies of declarative memory have emphasized the role of the
hippocampus and prefrontal cortex in learning more generally
(24–26). Critically, it is currently not known if these systems
mediate skill acquisition in math learning through tutoring.
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We conducted a math-tutoring study in a well-characterized
sample of 24 children aged 8–9 y, all in grade 3 of elementary
school, with varying levels of mathematical abilities. Our overall
study design is illustrated in Fig. 1. Each child underwent
structural and resting state functional MRI scanning before math
tutoring along with an extensive battery of neuropsychological
assessments. They subsequently went through an intensive 8-wk
one-to-one tutoring program focused on number knowledge
tutoring with speeded practice on efficient counting strategies.
Tutoring was designed to facilitate fluency in arithmetic problem
solving (9, 10, 13, 14). Before and after tutoring, we recorded
arithmetic strategy use as well as speed, accuracy, and perfor-
mance efficiency of arithmetic problem solving in each child
using standardized procedures (23). In addition to standard re-
gression analyses, we used a machine learning approach (27, 28)
to investigate behavioral and neural predictors of performance
gains with tutoring. We first conducted prediction analyses using
neuropsychological assessment scores to investigate behavioral
measures that predict performance improvements on arithmetic
problems with math tutoring. We then used voxel-based mor-
phometry (VBM) to investigate regional gray matter volume that
predicts performance improvement with tutoring. We then used
resting-state functional MRI (fMRI) data to investigate functional
circuits that predict performance improvements with tutoring. We
hypothesized that prefrontal and parietal regions involved in
arithmetic (29) as well as MTL areas involved in declarative
memory (22) would predict performance improvements in chil-
dren who received one-to-one tutoring. Finally, we examined the
specificity of our findings using 16 age- and grade-matched chil-
dren who served as a no-contact comparison group.

Results
Participants.Demographic information and cognitive profile data
for the tutoring and no-contact comparison groups are shown in
Tables S1 and S2, respectively.

Eight Weeks of One-to-One Math Tutoring Improves Arithmetic
Performance, with Some Children Improving More than Others. Per-
formance on the arithmetic verification task improved signifi-
cantly after tutoring (Fig. 2). Performance gains were observed
for both accuracy [F(1, 23) = 17.25, P < 0.001, ηp2 = 0.43] and
reaction time [F(1, 23) = 19.28, P < 0.001, ηp2 = 0.46]. To better
assess simultaneous changes in accuracy and reaction time, we
computed a composite measure of performance efficiency (30).
Performance efficiency showed significant increases after tutoring
[F(1, 23) = 51.43, P < 0.001, ηp2 = 0.69]. All 24 children

individually showed increases in efficiency after tutoring. The
mean improvement in performance efficiency was 67%, ranging
from 8% to 198%. In addition, there was a significant increase in
use of retrieval strategies after tutoring [F(1,18) = 6.57, P = 0.02,
ηp2 = 0.27] (Fig. 2). In contrast, the no-contact comparison group
did not show gains in accuracy [F(1, 15) = 0.62, P = 0.44, ηp2=
0.04), reaction time [F(1, 15) = 2.78, P = 0.12, ηp2 = 0.16], per-
formance efficiency [F(1, 15) = 2.78, P = 0.16, ηp2 = 0.16], or
retrieval strategy use [F(1,15) = 0.47, P = 0.50, ηp2 = 0.03] after 8 wk
(Fig. S1).

Behavioral Measures Do Not Predict Individual Differences in
Arithmetic Skill Acquisition in Response to 8 wk of One-to-One
Math Tutoring. To investigate whether behavioral measures pre-
dict individual differences in arithmetic skill acquisition, we ex-
amined the relation between behavioral measures acquired
before tutoring and changes in arithmetic skills with tutoring.
None of the behavioral measures included in the extensive bat-
tery of neuropsychological assessments conducted before tutor-
ing, including assessments of intelligence quotient (IQ), working
memory or math and reading abilities, were associated with
arithmetic problem solving performance improvements. Criti-
cally, neither the numerical operations (r = −0.38, P = 0.07) nor
the math reasoning (r = −0.14, P = 0.54) subtests of the Wechsler
Individual Aptitude Test (WIAT)-II were related to changes in
performance efficiency with tutoring (Fig. S2). Further, none of
the working memory subscores (digit recall: r = −0.03, P = 0.89;
block recall: r = −0.11, P = 0.59; backward digit recall: r = 0.06,
P = 0.75; count recall: r = 0.28, P = 0.19), nor a composite
working memory score (r = −0.08, P = 0.69), were related to
changes in performance efficiency with tutoring. To test whether
multiple behavioral measures together were related to changes
in arithmetic skills with tutoring, we used multivariate stepwise
regression with change in performance efficiency as the dependent
variable and neuropsychological assessments listed in Table S1 as
independent variables. This multivariate analysis did not reveal
any significant behavioral correlates of arithmetic skill acquisi-
tion (P > 0.46).
To further examine the predictive ability of behavioral mea-

sures, we used a machine learning approach: balanced cross-

Fig. 1. Study design. Each child first underwent an extensive battery of
neuropsychological assessments. At time 1, each child performed two arith-
metic tasks, one designed to assess strategy use and the second designed to
assess accuracy and reaction time during problem solving. Structural MRI
(sMRI) and resting-state fMRI (rsfMRI) scans were also acquired at time 1. At
time 2, the two arithmetic tasks were repeated to assess changes in arithmetic
strategy use, accuracy, and reaction time. Between time 1 and time 2, children
went through an intensive 8-wk, one-to-one tutoring program focused on
conceptual aspects of number knowledge and speeded practice on efficient
counting strategies and systematic learning of number families. Together,
these training components were designed to facilitate fluency in arithmetic
problem solving.

Fig. 2. Eight weeks of one-to-one math tutoring improves arithmetic per-
formance, with some children improvingmore than others. Participants solved
arithmetic problems with significantly (A) higher accuracy, (B) faster reaction
time, (C) higher performance efficiency, and (D) greater use of retrieval
strategies after undergoing 8 wk of one-to-one math tutoring. The mean
improvement in performance efficiency was 67%, ranging from 8% to 198%.
Performance efficiency is a composite standardized measure obtained by
combining accuracy and reaction time for each child. Time 1 and time 2 denote
before and after tutoring measures respectively (*P < 0.05, ***P < 0.001).
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validation combined with linear regression (SI Materials and
Methods). Results from this analysis were consistent with the
results from the correlation analysis, namely: neither the numerical
operations [r(pred,actual) = 0.18, P = 0.28] nor the math reasoning
[r(pred,actual) = −0.13, P = 0.57) subtests of the WIAT-II nor the
working memory subscores [digit recall: r(pred,actual) = −0.21, P =
0.66; block recall: r(pred,actual) = −0.07, P = 0.44; backward digit
recall: r(pred,actual) = −0.23, P = 0.73; count recall: r(pred,actual) =
−0.01, P = 0.68], nor a composite working memory score [r(pred,
actual) = −0.13, P = 0.35], assessed before tutoring predicted
changes in performance efficiency with tutoring.

Gray Matter Volume in Hippocampus Predicts Individual Differences
in Arithmetic Skill Acquisition in Response to 8 wk of One-to-One
Math Tutoring. To investigate whether regional gray matter vol-
ume predicts individual differences in arithmetic skill acquisi-
tion, we conducted a VBM analysis using T1-weighted MRI
images acquired before tutoring. We then performed a whole-
brain regression analysis using the VBM derived gray matter
volume as the independent variable and change in performance
efficiency with tutoring as the dependent variable. Gray matter
volumes of the right hippocampus, right thalamus, and right
cerebellum were correlated positively with changes in perfor-
mance efficiency with tutoring (Fig. 3 and Table S3). In addition
to whole-brain VBM, we performed additional analyses using an
observer-independent cytoarchitectonically defined region of
interest (ROI) encompassing the right hippocampus. Consistent
with findings from the voxel-wise whole-brain analysis, a signifi-
cant positive correlation was found between gray matter volume
of the right hippocampus ROI and changes in performance ef-
ficiency with tutoring (r = 0.54, P < 0.01). These results remained
significant even after covarying out pretutoring performance
efficiency levels (r = 0.55, P < 0.01). To further examine the
effect of pretutoring performance efficiency levels on our results,
we excluded seven participants who had high pretutoring per-
formance. The results remained unchanged even after excluding
these seven participants from the analysis. Additional analyses
revealed that among these three brain regions, the gray matter
volume of the right hippocampus was the most related to per-
formance gains. Specifically, gray matter volume within the right
hippocampus cluster, compared with the thalamus and cerebel-
lum cluster, explained the most variance observed in perfor-
mance gains (P < 0.01). In the no-contact comparison group, this

right hippocampus cluster was not correlated with changes in
performance efficiency after 8 wk (r = 0.30, P = 0.26) (Fig. S3).
To further examine the predictive ability of regional gray matter

volume, we used a machine learning approach: balanced cross-
validation combined with linear regression (SI Materials and Meth-
ods). Results from this analysis were consistent with the results from
the correlation analysis, namely: gray matter volume in hippocam-
pus [r(pred,actual)= 0.45, P = 0.008] was most predictive of changes
in performance efficiency with tutoring. In the no-contact compar-
ison group, this right hippocampus cluster did not predict changes in
performance efficiency after 8 wk [r(pred,actual) = −0.05, P = 0.36].

Intrinsic Functional Connectivity of the Hippocampus Predicts Individual
Differences in Arithmetic Skill Acquisition in Response to 8 wk of One-to-
One Math Tutoring. To investigate whether functional interactions
of the hippocampus predict individual differences in arithmetic
skill acquisition, we conducted a whole-brain regression analysis
using functional connectivity of the hippocampus as the in-
dependent variable and change in performance efficiency with
tutoring as the dependent variable. Functional connectivity of the
hippocampus with the left DLPFC, left VLPFC, right supple-
mentary motor area, right middle temporal gyrus, and basal
ganglia before tutoring showed a significant positive relation with
changes in performance efficiency with tutoring (Fig. 4 and Table
S4). These effects remained significant even after covarying out
individual differences in right hippocampal volume as well as
pretutoring performance efficiency levels. No regions showed
negative correlations with improvement in performance effi-
ciency with tutoring. To further examine the effect of pretutoring
performance efficiency levels on our results, we excluded seven
participants who had high pretutoring performance. The results
remained unchanged even after excluding these seven partic-
ipants from the analysis. We then compared the correlation
strength of hippocampus connectivity with that of the right thal-
amus and the right cerebellum, the other two regions identified
by the VBM analysis, as well as a fourth ROI encompassing right
IPS, voxels consistently implicated in numerical cognition (31).
This analysis revealed that, compared with the functional con-
nectivity of the thalamus, cerebellum, and IPS, the functional
connectivity of the hippocampus was the most correlated with
performance gains (P < 0.001) (Fig. 5). In the no-contact com-
parison group, hippocampus connectivity with multiple target
brain regions identified in the tutoring group were not correlated
with performance efficiency changes after 8 wk (P> 0.11; Fig. S4).
To further examine the predictive ability of functional connec-

tivity of the hippocampus, we used a machine learning approach:
balanced cross-validation combined with linear regression (SI
Materials and Methods). Results from this analysis were con-
sistent with the results from the correlation analysis, namely:
functional connectivity of the hippocampus with the left DLPFC
[r(pred,actual)= 0.38, P = 0.02], left VLPFC [r(pred,actual)= 0.54,
P = 0.002], right supplementary motor area, [r(pred,actual) = 0.67,
P = 0.002], right middle temporal gyrus [r(pred,actual) = 0.78, P =
0.002), and basal ganglia [r(pred,actual) = 0.75, P = 0.002] pre-
dicted performance gains with tutoring. Additionally, compared
with the functional connectivity of the thalamus, cerebellum, and
IPS, the functional connectivity of the hippocampus was the most
predictive of performance gains. In the no-contact comparison
group, hippocampus connectivity with multiple target brain regions
identified in the tutoring group did not predict performance effi-
ciency changes after 8 wk (P > 0.21). These results highlight the
specificity of our findings with respect to the tutoring group.

Discussion
This study examines neural predictors of individual responses to
math tutoring in children. We used a one-to-one, validated in-
dividualized math-tutoring program (10, 16) that emphasized
conceptual as well as procedural knowledge important to the
development of arithmetic skill. The tutoring program was highly
effective in that performance gains were systematically seen in ac-
curacy, reaction time, overall performance efficiency, and retrieval

Fig. 3. Gray matter volume in hippocampus correlates with improvement in
arithmetic performance in response to 8 wk of one-to-one math tutoring.
Gray matter volume of the right (R) hippocampus before math tutoring
showed a significant positive correlation with performance gains in arith-
metic problem solving after 8 wk of one-to-one math tutoring. Performance
gains represent a normed change in arithmetic problem-solving efficiency
from time 1 (before tutoring) to time 2 (after tutoring). Results are based on
VBM analysis at the whole-brain level (height threshold: P < 0.01; extent
threshold: P < 0.05, 100 voxels). The data plotted in the scatterplot are
nonindependent and are shown for visualization purposes only; these results
are further bolstered by the machine learning–based prediction and cross-
validation analyses.
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strategy use. In contrast, the no-contact comparison group showed
no such improvements. This corroborates previous classroom-
based tutoring studies (10, 14). Critically, we found that individual
response to 8 wk of tutoring was predicted by pretutoring measures
of brain anatomy and functional connectivity, but not by cognitive
and neuropsychological measures. Notably, children who hadmore
gray matter volume in the hippocampus showed greater improve-
ments in problem-solving efficiency. Hippocampal functional con-
nectivity with the PFC and basal ganglia also predicted significant
improvements in arithmetic problem-solving skills, and these ef-
fects were significant even after covarying out individual differences
in hippocampal volume. Importantly, compared with other brain
regions typically associated with math performance, including the
IPS, hippocampal connectivity emerged as the strongest predictor
of performance changes with tutoring. These findings provide evi-
dence for the importance of hippocampal structure and circuitry in
early-stage math learning.
We found that children with larger right hippocampus volumes

showed greater improvement in arithmetic problem-solving skills

with tutoring. Although the role of the hippocampal system in
memory encoding and retrieval of individual stimulus items is
well known (24–26), its role in learning and acquisition of aca-
demically relevant skills such as math has received virtually no
attention. Previous studies in adults have emphasized the role of
prefrontal and posterior parietal cortices in arithmetic fact
learning over a period of about a week (32), but neither pre-
tutoring anatomy nor functional activation in these brain areas
have been linked to posttutoring gains. Our findings of hippo-
campal volume as a significant predictor of posttutoring gains
are, however, consistent with emerging evidence from develop-
mental studies, suggesting that during critical stages of arithmetic
knowledge acquisition children rely more on hippocampus-based
declarative memory systems for fact retrieval. Thus, for example,
children show greater activation of the hippocampal memory
system compared with adults (21, 33), and Cho and colleagues
recently reported differential recruitment of the right hippocam-
pus in relation to greater use of retrieval strategies during arith-
metic problem solving (23). However, as with previous studies in
adults, this study of early development has relied on cross-sec-
tional and correlational approaches. Our findings of hippocampal
volume as a predictor of learning and skill acquisition over time
provide evidence of its causal role in skill acquisition and learning
in an academically relevant domain. Consistent with this inter-
pretation, it is further noteworthy that children with dyscalculia
demonstrate structural deficits in the hippocampus and the ento-
rhinal cortex (34) and they typically have poor skills in retrieving
arithmetic facts from memory (35).
The second key finding of our study relates to functional circuits

associated with the hippocampal region whose gray matter volume
predicted behavioral improvements with tutoring. We used resting
state fMRI acquired before tutoring to probe hippocampal circuits
and investigate whether hippocampal connectivity predicted per-
formance improvements with tutoring. We found that intrinsic
functional connectivity of the hippocampus with multiple PFC
regions before tutoring predicted improvements in arithmetic
problem-solving skills after tutoring. This included the dorsolat-
eral and ventrolateral PFC, two prefrontal regions important for
cognitive control processes that facilitate memory encoding and
retrieval (36–38). Hippocampal interactions with these PFC

Fig. 4. Functional connectivity of the hippocampus correlates with im-
provement in arithmetic performance in response to 8 wk of one-to-one
math tutoring. Functional connectivity of the right hippocampus (R Hipp)
before math tutoring showed a significant positive correlation with per-
formance gains in arithmetic problem solving after 8 wk of one-to-one math
tutoring. Performance gains represent a normed change in arithmetic
problem-solving efficiency from time 1 (before tutoring) to time 2 (after
tutoring). Performance gains were correlated with time 1 hippocampal
connectivity with the left dorsolateral prefrontal cortex (L DLPFC), left ven-
trolateral prefrontal cortex (L VLPFC), right supplementary motor area
(R SMA), left basal ganglia (L BG), and right middle temporal gyrus (R MTG).
Composite 3D view of connectivity network is shown in the central panel
with the right hippocampus seed ROI highlighted in red and voxels showing
peak connectivity with the hippocampus highlighted in green. Surrounding
panels show brain areas correlated with performance gains with tutoring
(height threshold: P < 0.01; extent threshold: P < 0.01, 128 voxels). Scatter-
plots in each panel are based on voxels showing peak connectivity. The data
plotted in each scatterplot are nonindependent and are shown for visuali-
zation purposes only; these results are further bolstered by the machine
learning–based prediction and cross-validation analyses.

Fig. 5. Functional connectivity of the hippocampus shows highest correla-
tion with improvement in arithmetic performance in response to 8 wk of
one-to-one math tutoring. Correlation of right hippocampus functional
connectivity before math tutoring with performance gains in arithmetic
problem solving after 8 wk of one-to-one math tutoring was higher than the
correlation of the right thalamus functional connectivity and the right cer-
ebellum functional connectivity before tutoring with performance gains.
The right thalamus and the right cerebellum were the two other regions
besides the right hippocampus whose gray matter volume before math
tutoring correlated with performance gains in arithmetic problem solving
after tutoring. A fourth region encompassing right IPS voxels consistently
implicated in numerical cognition also had significantly less correlation than
the hippocampus (***P < 0.001).
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regions are also known to facilitate long-term memory formation
(37). Consistent with this view, Cho and colleagues found in-
creased recruitment of the same hippocampal and PFC regions
with greater retrieval use (23). In addition to the PFC, hippo-
campal interactions with the basal ganglia were also predictive of
performance improvements with tutoring. In contrast, the no-
contact comparison group showed no such effects. These results
provide evidence that arithmetic skill acquisition depends on the
intrinsic connectivity of the procedural memory subserved by the
basal ganglia and declarative memory subserved by the hippo-
campus-based system. Our findings are consistent with the notion
that the hippocampus and basal ganglia form interacting memory
systems (39–41) that contribute to skill and knowledge especially
during early phases of learning, which rely on both procedural and
declarative memory systems (39–43). The most thoroughly stud-
ied developmental and schooling-based improvement in arith-
metical competency is change in the distribution of strategies
used during problem solving (13, 15, 44). With development, the
mix of strategies changes such that inefficient strategies, such as
counting, are used less frequently, and efficient strategies, es-
pecially retrieval, are used more frequently (15, 45, 46). More-
over, the speed and accuracy with which individual strategies are
executed improves with development resulting in long-term
memory representations that support the use of memory-based
problem-solving processes. In our study, before tutoring, 8–9 y
old children primarily used inefficient “counting” strategies. At
the end of 8 wk of intensive math tutoring, their strategy use
shifted to predominant use of retrieval. Our findings suggest that
arithmetic skill acquisition during this early period of learning
depends on the integrity of hippocampal-prefrontal cortex and
hippocampal-basal ganglia functional circuits. Children who
exhibited higher intrinsic functional connectivity in these circuits
before tutoring showed the greatest performance improvement in
math problem solving.
A third important finding of our study is that the brain mea-

sures outperformed behavioral measures in predicting perfor-
mance improvements with tutoring, including domain-general
measures, such as IQ and working memory, and domain-specific
measures, including standardized measures of numerical oper-
ations and verbal math reasoning. Previous behavioral studies
have related math achievement with domain-general abilities
including working memory and executive functions (47) as well
as domain-specific abilities including estimation abilities (48),
nonsymbolic arithmetic ability (49), symbolic numerical distance
effect (50), and number sense acuity (51, 52). However, it is
crucial to point out that our study differs quite radically from the
aforementioned ones. The main difference being that these
studies examined how behavioral measure at time 1 is correlated
with mathematical achievement at time 2 [e.g., number sense
acuity at time 1 is correlated with arithmetic math performance
years later (51)], which is in contrast to our study in which we
examined whether behavior and/or neural measures at time 1
predict amount of arithmetic learning from time 1 to time 2.
Even more importantly, our study is unique because between
time 1 and time 2 each child underwent a targeted one-to-one
math tutoring, as opposed to other studies where the educational
factors that could have influenced their outcome were not sys-
tematically controlled. The main point of our findings is that the
amount of arithmetic learning (and not later arithmetic achieve-
ment, as it was for other studies) is best and uniquely predicted
by neural measures. Previous longitudinal studies of reading
development have demonstrated that neural measures can pro-
vide important additional information for the identification of
children at risk for low academic performance (53, 54). For ex-
ample, Hoeft and colleagues reported that patterns of brain ac-
tivation as well as right superior longitudinal fasciculus white-
matter organization predicted future reading gains over 1–2 y in
children with dyslexia (53). In contrast, standardized measures
of reading and language were not predictive of reading gains. In a
longitudinal study of math without focused one-to-one tutoring,
a combination of behavioral performance and brain activation

during working memory was found to be predictive of future
performance in children and adolescents ages 6–16 (55). Our
findings extend these studies by showing that performance gains
after 8 wk of math tutoring can be predicted by intrinsic brain
structure and functional connectivity measures, thereby pro-
viding important insights into why some children in primary-
grade school gain more from remedial one-to-one tutoring
than others.
In conclusion, our study provides strong evidence that in-

dividual differences in anatomy and functional circuitry of brain
regions associated with memory formation predict math-tutoring
outcomes in primary-grade school children. Importantly, the
predictive biomarkers for math learning identified in our study
are distinct from those identified in prior training studies of lan-
guage (56) and video game skill acquisition (57, 58) in adults. In
particular, our findings of hippocampal structure and hippo-
campal–prefrontal cortex and hippocampal–basal ganglia func-
tional circuits provide evidence for pathways that predict skill
development during tutoring designed to facilitate fact retrieval
skills. In contrast, learning a video game, which involves pro-
cedural, but not declarative learning, has shown to be predicted
by striatal, but not hippocampal volume (57). Our findings have
broad implications for understanding neurobiological factors
that predict individual differences in arithmetic skill acquisi-
tion. Quantitative neuroimaging measures of brain structure
and intrinsic brain organization, compared with behavioral
measures, can be used to better predict response to in-
tervention and provide insights into brain mechanisms that
support efficient learning. Characterization of predictive bio-
markers in each child may facilitate the development of tar-
geted training and intervention programs.

Materials and Methods
Participants. Twenty-four children (11 boys, 13 girls) in grade 3 (mean age
8.47 y) participated in a math tutoring study (Table S1), and 16 additional
age- and grade-matched children participated as a no-contact comparison
group (Table S2 and SI Materials and Methods).

Overall Study Design. Fig. 1 illustrates our study design. Demographic, neu-
ropsychological, cognitive, and brain imaging measures were acquired from
each participant before tutoring. The neuropsychological and cognitive
measures assessed intelligence, working memory, reading, and math prob-
lem-solving abilities (SI Materials and Methods). After successful completion
of the MRI scanning session, children started an 8-wk math-tutoring pro-
gram. Tutoring sessions occurred three times per week, each ∼40–50 min in
duration. Response to tutoring was examined using an arithmetic verifica-
tion task that assessed accuracy and reaction time and an arithmetic pro-
duction task that assessed retrieval strategy use before and after tutoring.
The no-contact comparison group followed an identical protocol, the only
exception being that they did not participate in any tutoring sessions.

Tutoring Sessions. Children took part in an 8-wk math-tutoring program
adapted from MathWise (10, 14). The tutoring program combined concep-
tual instruction with speeded retrieval of math facts. Similar to MathWise,
the tutoring involved a total of 15–20 h of training, but it was condensed to
8–9 h/wk, with longer lessons to equate overall time on tutoring. The
tutoring consisted of 22 lessons of increasing difficulty. The details of each
lesson are described in SI Materials and Methods.

Tutoring Outcome Measures. Response to tutoring was examined using an
arithmetic verification task that assessed accuracy and reaction time and an
arithmetic production task that assessed retrieval strategy use on single-digit
problems before and after tutoring. Arithmetic verification tasks involving
single-digit addition problems were performed during fMRI scanning and
emphasized speeded performance, whereas the strategy assessments were
performed outside the scanner with other standardized neuropsychological
measures and emphasized accuracy. Arithmetic verification and production
tasks are described in detail in SI Materials and Methods.

Structural MRI. For each subject, a high-resolution T1-weighted spoiled grass
gradient recalled inversion recovery 3D MRI sequence was acquired. We
conducted a VBM analysis using the T1-weighted MRI scans acquired before
tutoring to examine whether regional gray matter volume predicts predict
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performance improvements with math tutoring. Structural MRI data acqui-
sition and VBM analysis procedure is described in detail in SI Materials
and Methods.

fMRI. Each subject underwent a resting state scan that lasted 6 min. We
performed intrinsic functional connectivity analysis using preprocessed
resting state fMRI data acquired before tutoring to investigate functional
circuits that predict performance improvements with math tutoring. fMRI

data acquisition, preprocessing, and intrinsic functional connectivity analysis
procedure is described in detail in SI Materials and Methods.
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